2,650 research outputs found

    Synthesis of electro-optic modulators for amplitude modulation of light

    Get PDF
    Electro-optical modulator realizes voltage transfer function in synthesizing birefringent networks. Choice of the voltage transfer function is important, the most satisfactory optimizes the modulator property

    Technique developed for measuring transmittance of optical birefringent networks

    Get PDF
    The transmission characteristics of synthesized optical single-pass and double-pass birefringent networks is obtained by measuring network transmission as a function of network temperature. This technique is most useful for testing those birefringent networks whose bandwidths and periods are very small

    Discussion of: A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable?

    Full text link
    Discussion of "A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable?" by B.B. McShane and A.J. Wyner [arXiv:1104.4002]Comment: Published in at http://dx.doi.org/10.1214/10-AOAS398J the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Birefringent devices Final report, 8 Mar. 1966 - 8 Mar. 1967

    Get PDF
    Birefringent devices, lossless double-pass network synthesis, and electro-optical amplitude modulator

    Study to establish cost predictions for the production of Redox chemicals

    Get PDF
    The chromium and iron chloride chemicals are significant first costs for NASA Redox energy storage systems. This study was performed to determine the lowest cost at which chromium and iron chlorides could be obtained for a complex of redox energy storage systems. In addition, since the solutions gradually become intermixed during the course of operation of Redox units, it was an objective to evaluate schemes for regeneration of the operating solutions. Three processes were evaluated for the production of chromium and iron chlorides. As a basis for the preliminary plant design and economic evaluation, it was assumed that the plant would produce about 25,000 tons of contained chromium as CrCl3 and an equivalent molar quantity of FeCl2. Preliminary plant designs, including materials and energy balances and sizing of major equipment, were prepared, and capital and operating costs were estimated

    Use of wood waste as fuel in Western Montana

    Get PDF

    The Cauchy problems for Einstein metrics and parallel spinors

    Full text link
    We show that in the analytic category, given a Riemannian metric gg on a hypersurface M⊂ZM\subset \Z and a symmetric tensor WW on MM, the metric gg can be locally extended to a Riemannian Einstein metric on ZZ with second fundamental form WW, provided that gg and WW satisfy the constraints on MM imposed by the contracted Codazzi equations. We use this fact to study the Cauchy problem for metrics with parallel spinors in the real analytic category and give an affirmative answer to a question raised in B\"ar, Gauduchon, Moroianu (2005). We also answer negatively the corresponding questions in the smooth category.Comment: 28 pages; final versio

    Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions ? Part 2: Exemplary practical applications and numerical simulations

    No full text
    International audienceA kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters for aerosol and cloud surface chemistry and gas-particle interactions has been presented in the preceding companion paper by Pöschl, Rudich and Ammann (Pöschl et al., 2007), abbreviated PRA. It allows to describe mass transport and chemical reaction at the gas-particle interface and to link aerosol and cloud surface processes with gas phase and particle bulk processes. Here we present multiple exemplary model systems and calculations illustrating how the general mass balance and rate equations of the PRA framework can be easily reduced to compact sets of equations which enable a mechanistic description of time and concentration dependencies of trace gas uptake and particle composition in systems with one or more chemical components and physicochemical processes. Time-dependent model scenarios show the effects of reversible adsorption, surface-bulk transport, and chemical aging on the temporal evolution of trace gas uptake by solid particles and solubility saturation of liquid particles. They demonstrate how the transformation of particles and the variation of trace gas accommodation and uptake coefficients by orders of magnitude over time scales of microseconds to days can be explained and predicted from the initial composition and basic kinetic parameters of model systems by iterative calculations using standard spreadsheet programs. Moreover, they show how apparently inconsistent experimental data sets obtained with different techniques and on different time scales can be efficiently linked and mechanistically explained by application of consistent model formalisms and terminologies within the PRA framework. Steady-state model scenarios illustrate characteristic effects of gas phase composition and basic kinetic parameters on the rates of mass transport and chemical reactions. They demonstrate how adsorption and surface saturation effects can explain non-linear gas phase concentration dependencies of surface and bulk accommodation coefficients, uptake coefficients, and bulk solubilities (deviations from Henry's law). Such effects are expected to play an important role in many real atmospheric aerosol and cloud systems involving a wide range of organic and inorganic components of concentrated aqueous and organic solution droplets, ice crystals, and other crystalline or amorphous solid particles

    Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions: Part 2 ? exemplary practical applications and numerical simulations

    No full text
    International audienceA kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters for aerosol and cloud surface chemistry and gas-particle interactions has been presented in the preceding companion paper by Pöschl, Rudich and Ammann (Pöschl et al., 2005), abbreviated PRA. It allows to describe mass transport and chemical reaction at the gas-particle interface and to link aerosol and cloud surface processes with gas phase and particle bulk processes. Here we present multiple exemplary model systems and calculations illustrating how the general mass balance and rate equations of the PRA framework can be easily reduced to compact sets of equations which enable a mechanistic description of time and concentration dependencies of trace gas uptake and particle composition in systems with one or more chemical components and physicochemical processes. Time-dependent model scenarios show the effects of reversible adsorption, surface-bulk transport, and chemical aging on the temporal evolution of trace gas uptake by solid particles and solubility saturation of liquid particles. They demonstrate, how the transformation of particles and the variation of trace gas accommodation and uptake coefficients by orders of magnitude over time scales of microseconds to days can be explained and predicted from the initial composition and basic kinetic parameters of model systems by iterative calculations using standard spreadsheet programs. Moreover, they show how apparently inconsistent experimental data sets obtained with different techniques and on different time scales can be efficiently linked and mechanistically explained by application of consistent model formalisms and terminologies within the PRA framework. Steady-state model scenarios illustrate characteristic effects of gas phase composition and basic kinetic parameters on the rates of mass transport and chemical reactions. They demonstrate how adsorption and surface saturation effects can explain non-linear gas phase concentration dependencies of surface and bulk accommodation coefficients, uptake coefficients, and bulk solubilities (deviations from Henry's law). Such effects are expected to play an important role in many real atmospheric aerosol and cloud systems involving a wide range of organic and inorganic components of concentrated aqueous and organic solution droplets, ice crystals, and other crystalline or amorphous solid particles. We hope that the presented model systems and simulations clearly demonstrate the universal applicability and consistency of the PRA framework as a tool and common basis for experimental and theoretical studies investigating and describing atmospheric aerosol and cloud surface chemistry and gas-particle interactions
    • …
    corecore